Statistics 3

Exercise 3B

$1 n=9, \sigma^{2}=36, x=128$
a 95% C.I. for μ is $128 \pm 1.96 \times \frac{6}{\sqrt{9}}=(124.08,131.92 \ldots)$

$$
=(124,132) \quad(3 \text { s.f. })
$$

b 99% C.I. for μ is $128 \pm 2.5758 \times \frac{6}{\sqrt{9}}=(122.84 \ldots, 133.15 \ldots)$

$$
=(123,133)(3 \text { s.f. })
$$

$2 n=25, \sigma=4, \bar{x}=85$
a 90% C.I for μ is $85 \pm 1.6449 \times \frac{4}{\sqrt{25}}=(83.684 \ldots, 86.315 \ldots)$

$$
=(83.7,86.3)(3 \text { s.f. })
$$

b 95% C.I. for μ is $85 \pm 1.96 \times \frac{4}{\sqrt{125}}=(83.432,86.568)$

$$
=(83.4,86.6)(3 \text { s.f. })
$$

$3 \bar{x}+1.96 \times \frac{\sigma}{\sqrt{n}}=27.19$
$\bar{x}-1.96 \times \frac{\sigma}{\sqrt{n}}=25.61$
$2 \bar{x}=52.8$
$\bar{x}=26.4$
$26.4+1.96 \times \frac{\sigma}{\sqrt{n}}=27.19$
$\frac{\sigma}{\sqrt{n}}=0.403 \ldots$
A 99% confidence interval is
$\bar{x} \pm 2.5758 \times \frac{\sigma}{\sqrt{n}}$
$26.4 \pm 2.5758 \times 0.403 \ldots$
26.4 ± 1.038...
The confidence interval is $(25.36,27.44)$ (3 s.f.)

Statistics 3

$4 \sigma=15$
C.I. is $\bar{x} \pm z \times \frac{\sigma}{\sqrt{n}}$
width $=\frac{2 z \sigma}{\sqrt{n}}$
a
$90 \% \Rightarrow z=1.6449 \quad \therefore \frac{2 \times 1.6449 \times 15}{\sqrt{n}}<2$
$\Rightarrow \sqrt{n}>24.67 \ldots \quad \therefore n>608.78 \ldots$
So $n=609$
b
$95 \% \Rightarrow z=1.96 \therefore \frac{2 \times 1.96 \times 15}{\sqrt{n}}<2$
$\Rightarrow \sqrt{n}>1.96 \times 15 \therefore n>864.36 \ldots$
So $n=865$
c
$99 \% \Rightarrow z=2.5758 \therefore \frac{2 \times 2.5758 \times 15}{\sqrt{n}}<2$
$\Rightarrow \sqrt{n}>2.5758 \times 15 \therefore n>1492.817 \ldots$
So $n=1493$

5 a
$\sigma=50 \quad n=200 \quad \bar{x}=310$
90% C.I is $\bar{x} \pm 1.6449 \times \frac{\sigma}{\sqrt{200}}$
$=\left(310 \pm 1.6449 \times \frac{50}{\sqrt{200}}\right)$
$=(304.184 \ldots, 315.815 \ldots)$
$=(304,316) \quad(3$ s.f. $)$
b First we calculate the probability that μ is contained in exactly 3 specific 90% confidence intervals out of the total 5 .

The probability that this happens is:
$90 \% \times 90 \% \times 90 \% \times 10 \% \times 10 \%$
$=0.9 \times 0.9 \times 0.9 \times 0.1 \times 0.1$
$=0.00729$
Now we calculate that there are $5 \mathrm{C} 3=10$ ways we may choose 3 out of 5 (using the binomial expansion or nCr button on a calculator). Therefore there are 10 specific examples of μ being contained in exactly 3 of the 590% confidence intervals and so we have a probability of 0.0729 .

Statistics 3

6
$\sigma=15000 \quad n=80 \quad \bar{x}=75872$
90% C.I is $\bar{x} \pm 1.6449 \times \frac{\sigma}{\sqrt{80}}$
$=\left(75872 \pm 1.6449 \times \frac{15000}{\sqrt{200}}\right)$
$=(73113.41 \ldots, 78630.58 \ldots)$
$=(73113,78631) \quad$ (nearest integer)
or (73 100, 78600) (3 s.f.)
$7 \quad \sigma=13.5 \quad n=250 \quad \bar{x}=68.4$
a Must assume that these students form a random sample or that they are representative of the population.
b
95% C.I is $68.4 \pm 1.96 \times \frac{13.5}{\sqrt{250}}$
$=(66.726 \ldots, 70.073 \ldots)$
$=(66.7,70.1)(3$ s.f. $)$
c If $\mu=65.3$ that is outside the C.I. so the examiner's sample was not representative. The examiner marked more 'better than average' candidates.

8 a (23.2, 26.8) is 95% C.I. since it is the narrower interval.
b
$\bar{x}=\frac{1}{2}(23.2+26.8)=25$
$\therefore 1.96 \frac{\sigma}{\sqrt{n}}=25-23.2=1.8$
$\therefore \frac{\sigma}{\sqrt{n}}=0.9183 \ldots=0.918 \quad$ (3 s.f.)
c $\hat{\mu}=\bar{x}=25$ (mid-point of the intervals)
9 a $\bar{x}=\frac{1}{2}(128.14+141.86)=\frac{270}{2}=135$
\therefore C.I. will be $(130,140)$

INTERNATIONAL A LEVEL

9 b

$$
\begin{aligned}
& z \times \frac{\sigma}{\sqrt{n}}=5 \text { but } 1.96 \frac{\sigma}{\sqrt{n}}=6.86 \\
& \therefore z=\frac{5}{\left(\frac{6.86}{1.66}\right)}=1.4285 \ldots
\end{aligned}
$$

\therefore C.I. is $2 \times(0.9236-0.5)$

	$=0.8472$		(tables)
or	$=0.846872 \ldots$		(calculator)

\therefore C.I. is 85%
c \quad Now we know $1.96 \frac{\sigma}{\sqrt{100}}=6.86$
$\therefore \sigma=\frac{6.86 \times 10}{1.96}=35$
and require $z \times \frac{\sigma}{\sqrt{n}}=5$ where $z=1.96$

$$
\begin{aligned}
\therefore \frac{1.96 \times 35}{5} & =\sqrt{n} \\
\Rightarrow n & =188.23 \ldots
\end{aligned}
$$

\therefore Need $n=189$ or more
10
$W \sim \mathrm{~N}\left(\mu, 2.4^{2}\right) \quad n=36 \quad \bar{w}=31.4$
99% C.I. is $31.4 \pm 2.5758 \times \frac{2.4}{\sqrt{36}}$
$=(30.369 \ldots, 32.430 \ldots)$
$=(30.4,32.4) \quad(3$ s.f.)
11

$$
\sigma=20, n=40, \bar{x}=266
$$

99% C.I. is $266 \pm 2.5758 \times \frac{20}{\sqrt{40}}$

$$
\begin{aligned}
& =(257.854 \ldots, 274.145 \ldots) \\
& =(258,274) \quad(3 \text { s.f. })
\end{aligned}
$$

INTERNATIONAL A LEVEL

$12 E \sim \mathrm{~N}\left(0,1^{2}\right)$

a $\mathrm{P}(|E|<0.4)=(0.6554-0.5) \times 2$

$$
=0.311
$$

b

$$
\begin{aligned}
\bar{E} & \sim \mathrm{~N}\left(0, \frac{1}{9}\right) \\
\mathrm{P}(|\bar{E}|<0.5) & =\mathrm{P}\left(|Z|<\frac{0.5}{\sqrt{\frac{1}{9}}}\right) \\
& =(0.9332-0.5) \times 2 \\
& =0.866
\end{aligned}
$$

c
98% C.I. is $22.53 \pm 2.3263 \times \frac{1}{\sqrt{9}}$
$=(21.754 \ldots, 23.305 \ldots)$
$=(21.8,23.3) \quad(3$ s.f. $)$

